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Davey, Di Prima & Stuart’s (1968) double amplitude expansion for disturbances 
in flow between concentric cylinders is formulated in matrix notation. The 
stability of the secondary equilibrium (Taylor-vortex) flow is calculated using 
fifth-order terms in amplitude, and using the full equations rather than the 
small-gap approximation. Qualitative confirmation is found of instabilities to 
the Taylor-vortex flow to non-a.xisymmetric disturbances at about 10 yo above 
the first critical Taylor number. 

1. Introduction 
Consider two concentric oircular cylinders, the outer one fixed, and the space 

between them filled with liquid. We define a Taylor number T proportional to the 
square of the angular velocity of the inner cylinder. At steady values of T below 
a certain critical value, T, say, the flow is purely circumferential and is laminar 
Couette flow; at values of T above T,, however, the flow is more complex and has 
a toroidal (or Taylor) vortex system superimposed on a modified circumferential 
flow. The vortices are spaced regularly along the axis with a definite periodicity, 
neighbours having opposite senses of rotation. 

At still higher values of T, above another critical Taylor number TI, the Taylor 
vortices are modified by a waviness in the azimuth and in fact become waves 
travelling in that direction. Both the number of oomplete waves and the new 
critical Taylor number Tl are functions of the ratio 7 of the radii of the cylinders. 
Coles (1965), with 7 = 0.88 found the value of Tl to be about 1.5% with 4 azi- 
muthal waves. On the other hand Schwarz, Springett & Donnelly (1964), with 
7 = 0.945, found TI about 1*05Tc with only one azimuthal wave.? At still higher 
speeds Coles observed a sequence of new equilibrium states. 

Davey, Di Prima & Stuart (1968) (henceforth D. D. & S.) give a survey of the 
theoretical and experimental evidence and introduce a method of examining the 
interaction of certain axially-symmetric and non-axially-symmetric modes of 
disturbance of the basic Couette flow. This allows both an analysis of the stability 
of the Taylor-vortex flow and an examination of possible flows consequent upon 
an instability. 

They found that, with 7 = 0.951 and a Taylor number of about 1-07T,, the 

t We are interpreting their ‘weak’non-axisymmetric mode as an instability of the Taylor 
vortices. 

34 = = M  49 
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Taylor-vortex flow becomes unstable t o  a disturbance with one complete wave 
in the azimuth, although the preference for one wave is not very strong. The 
method is essentially valid only for Taylor numbers ‘near ’ the first critical value 
T,, so that Cole’s experiments are probably outside the range of validity and were 
not considered. 

D. D. & S.’s method involved expansion of the velocity in powers of an ampli- 
tude function of time, A( t ) ,  up to Aa(t), and the calculation of the instability of 
the Taylor vortices turned out to be a rather delicate matter. They felt that 
inclusion of fifth-order terms in A ( t )  could possibly have a crucial effect. They also 
made the ‘small-gap approximation ’. This was known to be reasonable for linear 
stability theory, but its effect on the Taylor-vortex instability was not known. 

The present work concentrates on the instability of the Taylor vortices for 
7 = 0.95 1, and was undertaken to find the effect of: (i) using fifth-order terms in 
the amplitude; (ii) using the full equations instead of the ‘small-gap’ equations. 

The expansion procedure is reformulated in a matrix form, which allows more 
uniformity of treatment of the various ordinary differential equations which 
appear. This means that we need to do much less manipulation to make the 
problem suitable for computing. 

It also turns out that the extension to a fifth-order expansion requires a very 
careful consideration of the method by which certain Landau constants and 
perturbation functions should be evaluated. This is because the Stuart-Watson 
expansion method does not uniquely determine the amplitude function A(t).  

Different choices of the Landau constants are possible leading to different 
determinations of A(t)  and to  different perturbation functions, all of which are 
asymptotically equivalent as T -+ T,. We choose our constants in the same way 
as Reynolds & Potter (1967) for the channel flow problem, but discuss the 
consequences more fully. In  particular we show that the present choice leads to 
a natural expansion in which A(t)  is the coefficient of the most unstable eigen- 
function in a linear eigenfunction expansion. 

Matkowsky (1970) has obtained a solution of a model problem similar to that 
of the development of the Taylor-vortex flow with time. He uses a systematic 
expansion of a disturbance to a steady-state solution in terms of a small para- 
meter 8, where in our problem we would have e2 = (T - T,)/T,. His amplitude 
function A ,  (t ’ )  for terms of order 6 satisfies an equation 

dA,/dt‘ = 2A,-cA?, 

where t‘ = e2t, and no fifth-order terms appear at this stage. This means we must 
consider carefully how the present fifth-order expansions are meaningful, and we 
examine this question briefly in $3 .  The conclusion we reach is that although 
fifth-order terms would not affect qualitatively the development of Taylor 
vortices, they could, nevertheless, be important in deciding the delicate matter 
of their stability. 

We find that D. D. & S.’s results for the instability of the Taylor vortices (to 
non-axisymmetric disturbances out of phase by in in the axial direction with the 
Taylor vortices) are qualitatively confirmed. Details of the critical Taylor 
numbers are in table 4. We see that although the use of the full equations and of 
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the fifth-order terms does change the critical values, the general picture of 
possible instabilities of the Taylor-vortex flow at values of T about 10 % above 
T, is still apparent. Since the contribution of the fifth-order terms is fairly small 
it is probable that the present results are fairly accurate for the idealized case of 
infinite cylinder length considered here. 

2. The non-dimensional equations 
Let r,  8, z denote cylindrical polar co-ordinates. Consider two infinitely long 

concentric right circular cylinders with the z axis as their common axis. The inner 
and outer radii are R, and R,, while the corresponding angular velocities are Q, 
and Q2. 

We start from the Navier-Stokes and continuity equations for viscous incom- 
pressible laminar flow. There is a basic steady Couette flow solution of the 
equations, though it is known to be stable only at Taylor numbers below a certain 
critical value T,. The basic flow is 

u,, = 0, uo = V ( r )  = Ar+B/r ,  u, = 0, (2.1) 

where 

and the pressure is a known function p ,  of r only. 
We set 

u,, = u', uo = V ( r )  +v', u, = w', p = po(r) +p' ,  

where the primed variables are functions of r ,  8, z and t, to obtain the disturbance 
equations satisfied by u', v', w' and p'.  Since we wish to consider both the 'small- 
gap ' and the full equations we choose our non-dimensional variables in the same 
way as D.D. & S. except for the definition of a below. First, we define the 
constants 

Ro = 4(R1+4), = +(Q,+Q,), d = RZ-81 (2.2) 

and the dimensionless constant 
= - Ad/Q,  R,. 

The dimensionless variables are x, 4, y, T ,  and u, v, w, p ,  defined by 

r = R,+dx, z = @, 8 = (Q0d2/v)$,  t = (d2 /v )7 ,  

U' = - (v /ad)  W, V' = QOROV, W' = - (v /ad)  W ,  p' = - (v2p/ad2)p. 

Here v is the kinematic viscosity and p the density. Using these variables we can 
express the equations of motion in a form containing just three independent 
dimensionless parameters 

T = -4AQOd4/v2, 6 = d/Ro, = !22/Q1. (2.5) 

The first of these, T ,  is called the Taylor number and we note that if Q2 = 0 (as it 
will be in our calculations) then T is proportional to the square of ill, We find it 
convenient notationally to use also the dimensionless parameter 
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and to continue to use a (defined in (2.3)), noting that the two dimensionless 
parameters 7 and a are given in terms of 6 and p by using 

The equations of motion also contain the dimensionless functions 

G(x)  = 1/(1 +SX) 

and 

These are merely the expressions ofR,/r and V(r) / ( rQ, )  in terms of our dimension- 
less parameters and x. 

Using the derivative with respect to x of the continuity equation t o  eliminate 
a2u/ax2 from the first momentum equation we are able to write the equations as 

aulax - AU - B au/a7 = L(U) u, 
6 

j=l 
where AU denotes the matrix product C Aij  and SO on. 

Here u = [uo, v,, w,, u, v, WITr 

with Tr denoting the transpose; 

A =  

and 

0 1 0 0 0 0 

0 0 1 0 0 0 

r -1 o 01 
0 

B = I o  i :I, a=-+--- a2 2G2a8 a2 a 
a p  T a p  *,%, 

( 2 . 1 0 ~ )  

(2.10 6 )  

(2.10c) 

(2.10a) 

a a  a TQ a 
84 ac a# 2 

SGu + aGv-- w- - aGu-+ a- v I a 

(2.10e) 
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It is implied by the equations that v, and w,, the second and third components of 
U, are related to  the fluid velocities v and w by 

v, = av/ax, W ,  = awlax (2.1O.f 1 
and that u, is the dimensionless pressure. 

3. The expansion procedure 
We first label boundary conditions as follows for a vector with six components. 

/I1: the first three components to be zero at x = ~f: Q, 
p2: the last three components to be zero at  x = &. 

The second set of conditions p2 expresses the physical condition of zero distur- 
bance velocity at  the cylinders, while the first set p1 is required later for certain 
adjoin t problems. 

Consider the linear problem 

aupx - AU - B aup = 0;  pz. 

u = e%7u1(x) euC + e % l c l ( x )  e-W 

(3.3) 

(3.4) 

A real solution of (3.3) is given by 

(where h is a real constant and a tilde denotes the complex conjugate) provided 
that a, is an eigenvalue and u1 is the corresponding eigenfunction of the eigenvalue 
problem for g: 

Here the definition of A@, Q) is 

(3.5) d u / d ~  - A(llo)~ - c+Bu = 0; /32. 

(3.6) 

We note that A@,q) contains the parameters T, S, p ,  h and k, and is a function of x. 
Problem (3.5) is just the usual linear stability problem of Couette flow for 
axisymmetric disturbances of wavelength %/A. 

It is well known that only real eigenvalues are found, and here we suppose that 
a, is the greatest (most unstable) eigenvalue and that u1 is the corresponding 
eigenfunction. Computations, or previous work, show us that ul(x) may be 
normalized to have real first, second, fourth and fifth components and purely 
imaginary third and sixth components. We regard ul(x) as so normalized. 

I A(p,Q) is obtained from A by replacing ( a p g  by iph and apq5 by iqk. 
A(P, Q) 

Another real solution of (3.3) is given by 

u = ebo7U2(X) e W + W  + eh7t2(x) e-iX-ikC, (3-7) 

provided that b, is an eigenvalue and u2 the corresponding eigenfundion of the 
eigenvalue problem for 

Since 8 = (Q0d2/v) $J = {T*SlJ/(2*a*))$Jtheonlyadmissablevaluesof karegivenby 

du/dx - At1* - yBu = 0; p2. 1 3 4  

k = m{TS/2a)lJ, (3.9) 
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where rn is an integer which specifies the number of complete waves in the 
azimuth. Here we suppose that b, is that eigenvalue with greatest real part of the 
non-axisymmetric linear stability problem (3.8). Computations tell us that both 
b, and u2 are complex. 

A third real solution of (3.3) is given by 

u = eboTV 2 (x) e-iAS+W + eh'a,(x) eiAS--ik+ (3.10) 

provided t h a t  dv, ldx - A(-'. ')v, - b, Bv, = 0; p,. (3.11) 

It is easy to see by examination of A(l9l) that if u2 is a solution of (3.8) then 
v2 = KQ, is a solution of (3.1 l ) ,  where the notation 6 means 

A 

U =  

1 
1 

0 

- 1  
1 

0 
1 

- 1  

(3.12) 

and where K is any constant. 
In order to  take account of the non-linear terms L(U) U in (2.10a) we shall 

expand the velocity U in a series beginning with expressions like (3.7) or (3.10), 
but with eaor replaced by a real amplitude function F(7)  and with eboT replaced by 
a complex amplitude funotion H(7);  and the linear relations dF1d.r = a,F and 
dH1d.r = b,H will be suitably modified. In other words we shall consider the 
interaction of certain basic linear eigenfunctions corresponding to the most 
unstable modes of linear theory. 

Since we are hoping to demonstrate the instability of Taylor vortices, we are 
guided by D. D. & S. to consider the interaction of the linear eigenfunction (3.4) 
with that combination of (3.7) and (3.10) which is out of phase by 4.n with (3.4) 
in the 5 direction. That combination which is in phase was shown t o  be stable by 
D. D. & S. and isnot considered. Now (3.4) has afador of cos hginits first, second, 
fourth and fifth components, so we choose v2 = - Q, in (3.11) and add (3.7) to 
(3.1 1) to obtain the appropriate combination which has a factor sin hgin its first, 
second, fourth and Uth components. 

Thus we are led to an expansion of U in powers of F(T) ,  H ( T ) ,  B(r): 

u = ulo0 F(7)  + UoloH(7) + uoolB(7) + u2()oF2(7) f Uo20H2(7)  + . . . 
+ u ~ ~ ~ F ~ ( T )  H(7)  + . . . + ulmn FZ(7) Hm(7)  Bp2(7) + . . . , (3.13) 

where u,,, = ul(x) eiA< + a,(x) e-iAc, (3.14 a )  

uolo == u2(x) e i X + W  - fi2(x) e-iAS+ikQ, (3.14 b)  

UOOl = fiOl0. (3.14 c) 

It turns out (though it is by no means c1ea.r at this stage) that in order to perform 
the expansion we must also set 

dF1d.r = a,F + a, F 3  +a ,FHA + a5 Fs+ a, F H 2 A 2  + . . . , 
dHld7 = b,H+ b l H 2 A  + b4F2H + b5F4H + b,HSA2+ ..., 

(3.15) 

(3.16) 
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where the constants a,, u4, u5, a,, b,, b,, b,, b, can later be found by certain existence 
conditions at a, = 0 or Re (b,) = 0. 

In partial explanation of (3.15) and (3.16) we note that if we use (3.13) for 
U we obtain 

aU/h = (ulo0 + ~Pu,,, + 227Hu,,, + 3F2u3,, + . . .) (u,P + a, F3 + . . .) 
+ ( ~ 0 1 0  + 2Huozo + -..) (boH + . . .) 
+ (UOOl + 2BUo0, + . . . ) (&if, + . .. ). 

Using this in ( 2 . 1 0 ~ )  we obtain, for example, that the coefficient of P3(7) gives 

( a/ax - A - 3u0 B, u300 = N300 a l u l O O ,  (3.16 a)  

where N300 is the non-linear contribution from earlier terms in the series. 
Now when a, = 0 the homogeneous problem has a solution and the right-hand 

side must be adjusted, by choice of a,, to ensure a solution. It looks at fist sight 
as if we should need a term a,P2 in (3.15) as well, but upon expanding further in 
Fourier series it becomes clear that this is not needed. Similarly, the other terms 
in (3.15) and (3.16) are introduced to ensure solvability at  a, = 0 or Re (b,) = 0. 

For a problem like that of determining the development of the Taylor-vortex 
equilibrium flows (H = 0 for our expansions) Matkowsky (1970) performs a 
systematic expansion in terms of E ,  where = T - T,. By using a stretched time 
variable t' = s2r he is able to obtain an expansion starting with the term 
Eul(r) A,(t'), and shows by consideration of O(e3) terms that 

dAJdt' = 2A - cA3 (C > 0). 

No fifth-order terms are needed for the determination of A,(t'). He also shows 
that higher-order amplitude functions Aj(t ' )  satisfy equations of the form 

dAj/dt' - ( 2  - 3cA3 Aj = Rj 

and thus argues that since A, + ( 2 / c ) f  then all the Aj + constant. D. D. & S .  
have given a different argument, using global stability analysis, that if the 
expansion up to A3(7) shows a tendency to a steady state, so will higher- 
order expansions. 

If we use t' = €27 in (3.15) and set H = 0 with 

and 

P =IeF,(t') + EZF,(t') + sSF,(t') + . . . 
a, = k , ~ ~ + k ~ ~ ~ + . . . ,  

we obtain, by equating powers of E ,  

clF,/dt' = k,F,+U,F& 

d27,ld.f' - (k,+ 3UlP;) = k2p0 

and so on, corresponding to  Matkowsky's amplitude equations. But since Re (b,) 
(although numerically small) does not tend to zero as T + T, one could not use the 
same method to modify the equations (3.15) and (3.16) together, with H =+ 0. 

By either our method or by Matkowsky's one can theoretically obtain the 
Taylor-vortex equilibrium flow to any order in a, or E .  To consider the stability 
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of these flows we linearize in H ,  and calculate the linear growth rate, which 
appears in the form c ,  + c2c2 + e4c3 + . . . and our fifth-order expansions allow us to 
find the #(e4) terms. These could be important in determining the zeros of the 
stability coefficient, since c1 is numerically small. We should also point out that 
equations (3.15) and (3.16) allow a description of the development of steady 
wavy-vortex flow from the linear instability, though we do not pursue that in 
this paper. 

Upon substitution of (3.13) in (2.10) me find that the forms of the spatial 
functions ulmn for I + m + n > 1 are forced by the non-linear terms. If we pick out 
the coefficients of F1HTnnneinh5+.iqk+ we obtain a set of ordinary differential 
equations which may be sequentially solved to give the flow field provided the 
constants in (3.15) and (3.16) are correctly chosen. 

In our subsequent work we shall need the values of only the constants a,, a,, a,, 
b,, b, and b, and to obtain these values we need only the selection of equations set 
out below. The function u j ( x )  on the left-hand side of the equation is in each case 
the coefficient of P f I m  eiPh~+d~k@ in the expansion of U, as indicated. We define the 
operator 9 ( p ,  q ;  K) by 

9 ( p , q ; ‘ K ) ~  (d/d~-Ac?”,q)-KB)u, 

where A@,q) is defmed in (3.6), and is a function of T, 6, p, A ,  m and x, 
Then the set of ordinary differential equations is: 

F eiX : 
Hei@ik@: 

$ 7 2 , 2 u 5 ,  

F2 : 
FHeaiAc+ik+: 9 ( 2 , 1 ;  a,+b,)u, = N,, 
FH eik+: 2 ( 0 , 1 ;  Uo +bo) = N6, 
F3,3iA5 : 

p3 eiX: 

PHe3iAt+ik+: P ( 3 , l ;  2a,+b,)u, = N,, 
P2H e**5+ik+: 

F4 e22h5 : 

9 ( 1 , 0 ;  a,)u,  = 0, 

9 ( 1 ,  1; b,)u,  = 0, 

9 ( 2 , O ;  Za,) U ,  = N3, 
9 ( O ,  0; 2a0) u4 = N,, 

9 ( 3 , O ;  3a0) up = N7, 
2 ( 1 , 0 ;  3aO)u8 = N,+a,Bu, ,  

9( 1 , l ;  2a, + b,) u,, = N,, + b, Bu,, 
9 ( 2 , 0 ;  4a0) ull = Nl1 + 2a1Bu3, 

F 4 :  9 ( O ,  0 ;  duo) ~ 1 2  = N12 + 2a1 Baq, 
F3H e2iAc5+ik+: 9 ( 2 ,  1 ; 3a, + b,) u13 = N,, + (a, + b4) Bu,,  

F3H eik+: 9 ( 0 , 1 ;  3a, + b,) u,, = N1, + (al + b,) Bu,, 
3’5 eiA5 : 9( 1 , O ;  5a,) ~ 1 5  = N15 + 3a1 Bus + Bu,, 
F4H ei“5+ik+: 9( 1 , l ;  4a, + b,) u,, = N,, + 2a, Bu,, + b, Bu, + b4ul0. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

In  every case we have the boundary conditions p2: the last three components of 
u are to vanish at x = & 4. Here the Ni are quadratic functions of vectors calcu- 
lated from the u, with n < j, and can be easily computed. Details are given in the 
appendix. The constants a,, ..., b, are not known, and are found by applying 
solvability conditions to certain of the above equations, as described later. 
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4. The small-gap approximation 
D. D. & S. performed their calculations using the ‘small-gap approximation ’. 

We will here merely describe this approximation in terms of the present notation. 
First, in the partial differential equations (2.10) we let 6 + 0, keeping T, p and 

the independent variables z, and g fixed. The limiting value of Q,(x) is 

and we note also that a -+ a, where 
1-P 
1 +p’ 

a, = - 

We next perform the expansion procedure described in $3,  with values of k given 
by (3.9), where we do not set 6 = 0, but specify k by 

k = m{TS/2aO}$ (m = 0,1 ,2 ,  ...). (4.3) 

For example, when we talk about the ‘ small-gap approximation with 6 = 0.05 ’ 
we mean that 6 + 0 in the partial differential equations (2.10) but that values of 
k are chosen with 6 = 0.05 in (4.3). 

An alternative approach is to solve the system with arbitrary ‘small ’ values of k 
(having first fixed T and p) and to note that from (4.3) 

6 = 2a0 k2/m2T, (4.4) 

so that any given value of k may be interpreted as applying to various values of 6, 
with m = 1,2 ,3 ,  . . . in (4.4). This will obviously save computation time if we 
choose the values of T and k suitably and are able to interpolate accurately; but 
here we shall adopt the direct method of using (4.3) to specify k. 

5. Method of calculation 
5.1. General aim 

We wish to investigate the stability of the Taylor-vortex equilibrium flow to 
small non-axisymmetric disturbances of the form (3.14b) plus its complex conju- 
gate. Let us regard p and 6 as fixed; then T, the Taylor number, is the only free 
parameter in the basic equations (2.10). But when we consider the ordinary 
differential equations (3.18) to (3.33) there are two more wave-number para- 
meters h and m at our disposal. These specify the wavelength 2n/A of the Taylor 
voi%ices and the number of azimuthal waves respectively. In doing any one 
calculation we shall keep h and rn fixed. The value of A is, mathematically 
speaking, not determined but experiments indicate that Taylor vortices appear 
with h 2 A,, where A, is defined as follows. Consider the linear eigenvalue problem 
(3.5); let a, be the greatest of the eigenvalues. Draw the curve a, = 0 in the 
( A ,  T) plane. Calculations show that this curve has a minimum, and we denote 
this minimum point by (Ac, T,). Above the curve a, > 0, below the curve a, < 0. 
In  our calculations we keep h fixed at  h = A,, or very close to A,, and use values 
o f T  > T,. 
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dF1d.r = 0 and H = 0 in (3.15). This yields the equation 
We calculate the equilibrium amplitude Fe of the Taylor vortices by setting 

a,+a,P$+a,F~+ ... = 0 (5.1) 

F, ( - ao/a,P (5.2) 

and we are interested in the root which has the asymptotic form (a, being real, 
a, real and negative, a, real) 

as a, + 0. We suppose that a small amount of the non-axisymmetric disturbance 
is introduced; then the behaviour of the amplitude function H ( T )  is given by 
(3.16) with F = F,. Linearizing in H we find 

dH/& = (bo+b4F,2+b5F:+ ...) H .  

b,, + b4,Fi + b,, F! + . . . 

(5.3) 

Now 8 is real, SO the quantity 

(5.4) 

is called the stability coefficient.? If it is positive the small disturbance will grow 
and if it is negative it will decay. 

Our aim is to find the value of the stability coefficient in a form which is 
asymptotically correct with error O(ag) as a,, -+ 0 (i.e. as T --f T,). 

5.2. On the linear eigenvalue problems and the adjoints 

Certain difficulties arise in evaluating the constants a,, a,, b, and b,. To discuss 
these we need to  make some preliminary remarks about the linear eigenvalue 
problems (3.5) and (3.8). 

We assume that the linear eigenvalue problem (3.5) for axisymmetric distur- 
bances of axial wavelength 2r/h has a set of real distinct eigenvalues r,, rl, r2, . . . , 
with corresponding eigenfunctions e,, el, e2, . . . . We order these so that go is the 
greatest, and remind the reader that a,, u1 of equation (3.18) have been chosen 
to be go,  e, respectively. 

The adjoint eigenfunctions are the solutions of 

du/dz + {A(l~O)}T' u + gm BU = 0; pl, (5 .5 )  

where the label p1 describes the boundary conditions that the first three com- 
ponents of u are zero at  x = + 8 and at z = - 8. We call the adjoint eigenfunctions 
f,, fly f2, . . . . Then in this notation the Fredholm alternative condition for the 
problem 

to have a non-trivial solution is that 

du/& - A(l* - rn BU = R; p2 (5.6) 

/ l f F R d x  = 0. (5.7) 

We assume also that the linear eigenvalue problem (3.8) for non-axisymmetric 
disturbances of axial wavelength 2n/h, and with m azimuthal wavea, has a set of 

The notation is that b,  denotes the real part of b,, and so on. 
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distinct complex eigenvalues yo, y,, y,, . , . , where yo has the largest real part. The 
corresponding eigenfunctions are called go,  g,, g,, .. . , while the adjoint eigen- 
functions are called h,, h,, h,, . . . . The condition for the problem 

du/dx - A('* ')u - BU = Q ; /3z (5.8) 

to have a non-trivial solution is 

* 
-4 

h ; f ' Q d x = O .  

It is easy to show also that the orthogonality relations 

/;f:rBe,,dx = s,,, 

(5.9) 

(5.10) 

(5.11) 

are satisfied after suitable scaling of the functions. 

5.3. The solations and the constants 

We now consider the set of ordinary differential equations (3.18) to (3.33). In 8 3 
we explained that a, and u1 of equation (3.18) are to be chosen as the greatest 
eigenvalue and corresponding eigenfunction of problem (3.5). We now fix 6,p, 
h(rn does not appear) so that a, is a function of T only. It is convenient to regard 
a, as independent and think of T and u, as functions of a,. 

We next select a value of m, specifying the number of complete azimuthal 
disturbance waves. We explained that b, and u2 of equation (3.19) are to be 
chosen as the most unstable eigenvalue and corresponding eigenfunction of (3.8). 
These, and all later functions and constants a,, a,, b,, b, can be regarded as 
functions of u,. 

After solving for u, and u2 we can easily calculate, at a, = 0 and values of 
a, > 0, N3, N,, N, and N, (see appendix) and proceed to solve for u3, u4, u5 and u, 
(see 0 6 for further details). We can now calculate N,, N,, N, and N,, and solve 
for u, and u9. 

But equations (3.25) and (3.27), for us and u,, respectively, do not have solu- 
tions when a, = 0 unless the constants a, and b4 are specially chosen. This is 
because the corresponding homogeneous problems have eigenfunctions u, and u, 
when a, = 0. In  order for solutions to exist when a, = 0 for equations (3.25) and 
(3.27) we must have 

a,, = - [ f: f,T'N8dx] , 
ao=O 

(5.12 a)  

t 
b40 = - [j-, h?N1Odz] 3 

m=O 
(5.12b) 

b,, denote the values of a, and b, when a. = 0. Here we have used where 
conditions (5.7) and (5.9) for existence of solutions. 
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Since we are interested in the value of the stability coefficient (5.4) when 
a, > 0 (i.e. when T > T,) we must decide what values we should give to a, and b, 
when a, > 0; and how to go on to calculate the constants a6 and b,. These matters 
can be clarified by considering the solutions of equations (3.25) and (3.27) in more 
detail. 

Let us suppose that, a t  general values of a,, we expand ug in terms of the 

u,= C c,e,. (5.13) 
eigenfunctions en of (3.5) : a, 

n=O 

Both the c,  and the functions e, are functions of a,, and u, = e,. 
By substitution into (3.25),  multiplication by fz, the transpose of the mth 

adjoint eigenfunction, and integration with respect to x over the interval we 
obta,in with the use of (5.6) and (5.10) 

(5.14) 

2a,c, = -/!4frrN,dx-a,. (5.15) 

Remember here that N,, f?, fp are all functions of a,. Thus in order for c, to be 
finite when a, = 0 we must have condition (5.12a), as already noted from a 
different point of view. At values of a, > 0 we see that the choice of a, determines 
the multiple of e, occurring in ug. It seems reasonable to restrict ourselves to 
values of a, and c, which have derivatives with respect to a, at a, = 0, so we now 
write 

c, = C, ,+U,C11+ . . . ,  I 
(5.16) i a, = a,,+a,a,,+ ..., 

3 

a 
I = j $PN,dZ = Io+a,I,+ ... . 

We are implicity assuming here that f, and N, are also differentiable with respect 
to a, at a, = 0. There is no need to expand the eigenfunctions en, though they can 
in principle be expanded in the same way. 

By substitution into (5.15) and equating powers of a, we see that 

and 

a,, = --& 
2c,, = - a,, - I,. 

(5.17) 

(5.18) 

Equation (5.17) has already been noted as equation ( 5 . 1 2 ~ ) .  Now coo is the 
coefficient of e,( = u,) inu, when a, = 0, so we see that the choice of a,, determines 
the multiple of e, which we must include in ug when we solve (3.25) at a, = 0. 

Similarly, if we expandu,, in terms of the eigenfunctions g, of (3.8), (reminding 
the reader that u2 = go): m 

~ 1 0  = E dngn (5.14) 
n=O 

and use the differential equation (3.27), the differential equation for the eigen- 
function (3.8) and the orthogonality relations (5.11) we h d ,  for all values of a,, 

+ 
2a, do = - h,T",, d~ - b,. (5.20) 
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If we now write 

J hpN,,dz = Jo+a,J,+ ..., 
(5 .21)  

we find from (5.20) that 

b4, = -J, and 2d,, = --b41-J1. (5 .22 )  

The first of these equations (5.22) has already been noted as equation (5 .12b) ,  
and we see from the second that the choice of b4, determines the multiple do, of 
the eigenfunction go ( = u2) occurring in ul0 a t  a, = 0, (under the assumption of 
differentiability with respect to a, a t  a, = 0 of u,,, Nlo, etc.). 

As far as obtaining an asymptotically correct expression for the stability 
coefficient (5.4) is concerned, any finite values of a,, and b4, for n > 0 are 
allowable; for changes are induced in a5 and b, (through the functions us, ul0 and 
subsequent equations) in a complicated way such that bop+ b,,F,2 + b5,,F: remains 
a correct asymptotic approximation to the stability coefficient with error o(u2) 
as a, -+ 0. From this point of view all choices are equally valid; but nevertheless 
different choices will lead to different constants K in the error which is presumably 
asymptotic to Ka:, that is to different amounts of higher-order terms. This lack 
of uniqueness in our representation of the physical system arises from a certain 
lack of precision in our definitions of F(7) and B(7). 

The ambiguity disappears if we define P(T) and H(7) more precisely in a 
natural way as follows. The function F(T) is defined to be the coefficient, in the 
velocity vector U(z, g5, g, T ) ,  of the spatial function e,,(x) eiAc and H ( 7 )  is defined 
to be the coefficient of g,(x) eihc+ik$. These spatial functions are in a sense eigen- 
functions of the linear problem for U, and we could more generally expand U in 
eigenfunctions of the linear problem: 

W 

U(x, $, 5,7) = Re F ~ ? * ) ( T )  ug.*)(z) eipAc+QkQ, 
n,p,q=O 

where ~ $ 3 ~ )  = e, and ug'l) = go,. We are merely identifying F(7) with F ( l # o ) ( ~ )  
and H ( T )  with F(l> l) (7). 

Now since, in the expansion of u, ug is multiplied by F3(7) eiAc we must clearly 
choose a, such that us contains no multiple of the eigenfunction e,; that is we 
must choose c, = 0 in (5.13) both when a, = 0 and when a, > 0. For otherwise the 
coefficient of e&) eiAc is F(T) +c ,F3(7)  + . .. contrary to our definition of F(T) .  
So referring to (5.15) we see that, at all values of a,, we should choose 

(5.23) 

Similarly, we must choose b, in such a way that ulo contains no multiple of the 
eigenfunction go. Thus, from (5 .20 ) ,  at all values of a,, 

(5 .24)  
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Equations ( 5 . 1 2 ~ )  and (5.12 b )  are then satisfied. But in order to actually calculate 
u8 and ul0 at a, = 0 we must remember that the differential equations do not 
determine the functions uniquely,'f and we must be careful to choose those 
solutions which contain no multiple of the eigenfunctions e, and go respectively. 
We explain in 5 6 how this is achieved. 

Concerning the values of a, and b, we note that they are, by the same arguments 
as above, uniquely determined provided that we define F(7)  and H ( 7 )  as we have 
done. But to obtain a solution for the stability coefficient correct to order a& we 
note that N a, so that we need only find the values as, and b,, of a, and b, 
at a. = 0. 

This is achieved by solving equations (3.24) onwards only at a, = 0, and using 
(5.7) and (5.9) as conditions for the existence of solutions of (3.32) and (3.33) a t  
a, = 0. This gives the values of us and b, at a, = 0 to be 

(5.25) 

a a 
b - -  h,T'N16dx- 2a1J4 h,TPBq,dz- ".s, h~rBulodx] . (5.26) 

Finally, to find the stability coefficient (5.3) as a function of a,, we use b, as the 
function of a, obtained from the eigenvalue problem (3.5), use aI as a function of 
no from (5.23), and b, from (5.24), but use b, = b,, and a, = as,. This will give the 
value of the stability coefficient with error presumably O(ui) as a, -+ 0. 

In  terms of the parameter T, this means that we choose T, solve for a,, b,, a,, b, 
as functions of T, but evaluate as and b, only at  T = T,, and our result for the 
stability coefficient will be an asymptotic approximation as T -+ T,. 

5 4  I: ao=O 

6. The numerical work 
To solve the eigenvalue problem (3.18) we followed the method used by 

previous authors, for example see Krueger, Gross & Di Prima (1966). That is, by 
means of a fourth-order Runge-Kutta scheme three independent integrals of the 
differential equation were found, each satisfying the boundary conditions a t  
x = -+. These were called V,, V, and V, with initial values = Sii, where V, 
denotes the j t h  component of Vi. If AV, + BV, + CV, is the eigenfunction then 
a t x = g  

lV&l = 0 (i = 1 , 2 , 3 ; j  = 4,5 ,6) .  (6.1) 

The zero of this determinant as a function of a, (for fixed values of T, p, 6, A )  was 
located by a root-finding routine using linear interpolation. It was then easy to 
find the eigenfunction u, by solving for A :  B:  C. Complex arithmetic and the 
matrix formulation were used, so that the same programme could then be used 
to calculate b, and u2 of equation (3.19). 

t For a, > 0 the solutions for us and ul0 are uniquely determined by our choice of a, and b,. 
We are merely enforcing continuity conditions on Us and u,, as functions of a,, at a, = 0, by 
making the proper definitions at a, = 0. 
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Next we found the adjoint eigenfunctions f, and h,, and appropriate normaliza- 
tions were made to u,, u2, f, and h, to satisfy (5.8) and (5.11). It was found 
important not to scale U, or U, to be too large or too small, otherwise very large 
or small numbers appeared in the right-hand sides of later equations. In  our final 
calculations we took the second component of both u, and u2 to equal 1.0 at  
x = -1 

By using 20 Runge-Kutta steps we obtained, at worst, agreement to within 
2 or 3 units in the fourth figure with D. D. & S.’s calculations for the eigenvalues 
in the small-gap approximation, and with Krueger et d ’ s  calculations for the full 
equations. 

We then proceeded to problems (3.20) to (3.23). Particular care was needed in 
finding the function u4, and in finding u6 in the small-gap approximation. This 
was because for these problems the corresponding homogeneous problems do have 
eigenfunctions, with our present formulation, both when a, = 0 and when a, > 0. 
These eigenfunctions have the first component (pressure) constant and all other 
components zero, as can be seen by inspection of A(llo) and and may be 
designated as ‘almost trivial’. In D.D. & S.’s formulation the corresponding 
ordinary scalar differential equations for v do not have eigenfunctions. However, 
the orthogonality condition for existence of solutions was easily seen to be 
satisfied, so we went on to solve problems (3.20) to (3.23) by means of a routine 
written to deal with the non-homogeneous problem in general. 

For u,, n > 2, we used the following method. We first integrated the homo- 
geneous forms 

(6.2) 

2’  

du,/dx - A@% Q)u, - KBu, = 0 

with initial values, [l, 0, 0, 0, 0,  01, [0, 1, 0, 0, 0, 01 and [0, 0,1,0,0,0] to obtain the 
functions W,, W,, W3. Then the right-hand sides were inserted. This involved 
only the repeated use of a routine to evaluate the vector function 

R ( P ,  %P’, 4’9 Ul, urn) 

described in the appendix. The equation was then integrated (after interpolation 
to half-step points of the right-hand side for use in the Runge-Kutta scheme) to 
find a particular integral P with initial values [ 1, 1 , 1, 0, 0 , O ) .  To find a solution 
of the form AW, + BW, + CW3 + P we needed 

AWl,+BW,,+CW35+P6 = 0 at x = i. (6.3) 

AW,, + BW24 + CW34 + P4 = 0 I Awl6 BW, + cW36 f P6 = 0 

If no eigenfunction of the homogeneous problem exists then += 0 
(i = 1,2,3;  j = 4,5,6) ,  so we may solve directly for A ,  B, and C. However, if an 
eigenfunction does exist then there is not a unique solution for A ,  B, C. We may 
set (in general) one of the constants arbitrarily and use just two of the equations 
to find the others. For example, if we set A = 1 and use the first two equations 
we can find B and C provided that w24w3, - W3,W2, 4 0. Therefore we wrote a 
routine to deal with this case which used the largest 2 x 2 minor for the divisor in 
calculating the constants. The solution obtained in this way contained a multiple 
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of the eigedunction, but for the functions u, and u6 those eigenfunctions consisted 
merely of a constant first component, and it could be seen by examination of the 
Nj that this component did not affect any of the later functions. Since the first 
component is pressure, this is in accordance with the physical situation. 

We thus solved for u3 to 4) and then computed a, and b, by means of (5.23) 
and (5.24). These calculations were done with fixed p, 6, h and m both at  a, = 0 
(T = T,) and a t  values of a, > 0 (T > T,). 

We compared our results with those of D. D. & S. for the small-gap approxi- 
mation with p = 0, 6 = 0-05, h = 3.127, m = 1, a, = 0. Having access, through 
the courtesy of the authors, to some detailed figures, we were able to compare 
many of the components of our vector functions uj with the corresponding 
functions of D. D. & S. We found agreement to about 4 figures in all cases except 
that of the function u5, where the discrepancy for one component was about 2 yo 
of its absolute value a t  typical points. We checked our equations for this com- 
ponent against D.D. & S.’s and found (after some labour) that they were 
equivalent. Therefore the error lies somewhere in the computing methods or in 
the programming. We cannot say with complete certainty whose results are 
correct. Nevertheless, since we usedauniform method for solving all our equations 
and found agreement with many functions of D. D. & S., and checked our pro- 
gramme extensively we believe the present results to be correct. In any case, the 
discrepancy leads only to a difference of about 2 % in the imaginary part of b,, 
the real part not being affected. Tests were made by changing the imaginary 
part of b, arbitrarily by this amount and seeing the effect on the later constant b,. 
It was found to be negligible. 

We also compared our result for a, at a, = 0 with the result of Davey (1962) 
for the full equations with ,u = 0,6 = $, h = 3.163 and found a difference of less 
than 0.1 yo. 

We then went on to solve for us and ul0 a t  a, = 0 only. We recall that us and 
ul0 are not uniquely defined a t  a, = 0 by problems (3.25) and (3.27), but that in 
accordance with our choice of a1 and b, we need those solutions which contain no 
multiples of the eigenfunctions e, ( = u,) and go ( = u2). This was easily achieved 
as follows. Consider the case of us. We first calculated a general solution u,,, 
containing an unknown multiple of the eigenfunction ul, i.e. containing an 
unknown value of c,  in expansion (5.13), at a, = 0. Thus 

m 

U ~ G  = C enen, 
n = O  

and by using the orthogonality condition (5.10) we can show that 

!z 
c, = f,TPBu,,dx. 

We therefore subtracted caul from usG to obtain us, all these calculations being 
performed at  a, = 0. After following a similar procedure for ul, our final functions 
u, and ul, satisfied 

I l f p B u , d z  = 0, h,TPBu,,dx = 0 at a, = 0. (6.4) 
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We then went on to solve for the functions u,, to u14, at a, = 0 only. We had 
to remember that in the case of u12, and in the case of u,, with the small-gap 
approximation, the corresponding homogeneous problems did have the 'nearly 
trivial ' eigenfunctions mentioned earlier, and to use the appropriate method of 
solution. 

We then calculated a, and b, at a, = 0 by formulae (5.25) and (5.26); and 
calculated the equilibrium amplitudes Fe and the stability coefficient at  various 
values of a, (i.e. of T) as described earlier. 

We performed tests with 10,14,20 and 40 steps for some of the cases and found 
that the error in each of the constants appeared to be closely proportional to the 
fourth power of the step-length. Figures given in the tables are those obtained 
using 20 steps. Typically the values for the constants and for F, are estimated to 
have errors of less than 0.05 yo. However, the stability coefficients could not be 
calculated to within such a good percentage error, because they occur as dif- 
ferences between expressions involving the consta.nts in such a way that we lose 
some accuracy. The results for the m = 1 mode are believed to be accurate to 
within k 2 in the last figure quoted. For m = 2 and 4 we have quoted less figures, 
and these are believed to be correct. Here we are talking about the accuracy as a 
solution of the defined mathematical procedure, and are not attempting a discus- 
sion of the error in the asymptotic series. 

7. The results 
It was decided to do two cases. The first was the small-gap approximation with 

6 = 0.05 and y = 0. The main object of this was to compare the present results 
with those of D.D. & S. to find the effect of including terms in F5(7) in the 
expansion of the velocity, or equivalently of including terms of order ug in the 
stability coefficient. 

The second case was one using the full equations, again with 6 = 0.05 and 
p = 0. In  both cases we took h = 3.127. This is an accurate value for A, in the 
first case, and is close to A, in the second case. We kept the same h in order to have 
a direct comparison of the results of the small-gap and the full equations with all 
the parameters the same. 

The results are given in tables 1 to 4. One point should be emphasized. The 
values of the constants a,, a,, 4, b, and b, are not absolute, but depend upon the 
scaling chosen for eigenfunction ul. If u1 is multiplied by any constant K (which 
must be real by the nature of our expansion), then a,, b, are multiplied by K2, F," 
is multiplied by 1/K2, and a,, b, are multiplied by K4. The scaling adopted here 
was that the second component of u, was made equal to 1.0 at x = - 6 .  The 
scaling for u2 does not affect any of our results. The eigenvalues a,, b, and the 
stability coefficient b, + b,, Fz + b,, F: are not affected by the scaling of u,. 

In  55.4 we explained the method of calculation, using a, as our descriptive 
parameter for convenience. Here we have used the Taylor number as our 
specified parameter, a, being calculated by first specifying T and then solving 
the eigenvalue problem (3.5) for the largest a,. We chose to calculate those values 
of al and b, which are given by (5.23) and (5.24) a t  each value of T; and a50 and b, 

35 F L M  49 
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( a )  Small-gap, ,u = 0,s = 0.05, A = 3.127 

T 
1695 
1735 
1775 
1815 
1855 

T 
1753 
1843 
1903 
1933 
1963 
1993 

a0 a1 as0  

0~0000 - 4.892 - 2.862 
0.3077 - 4.983 - 
0,6120 - 5.071 - 
0.9132 -5.159 - 
1.2115 - 5.245 - 

( b )  Full equations, ,u = 0, 6 = 0.05, A = 3.127 

a0 a1 a60 

o*oooo - 5.533 - 3.370 
0.6619 - 5.737 - 
1.0972 - 5.871 - 
1.3126 - 5.937 - 
1.5266 - 6.002 - 
1.7390 - 6.068 - 

TABLE 1. Taylor-vortex constants 

p: 
0 

0.0597 
0.1134 
0.1624 
0.2076 

p: 
0 

0.1085 
0.1702 
0.1987 
0.2257 
0.2515 

(a) m = 1. Here bso = - 2.590--0.0833 
Stability coeff. - 

T bOT bOi boi b4i D.D. & S .  Present 

1695 - 0.0477 - 4.844 - 4.630 0.3600 - 0.0477 - 0.0477 
1735 0.2590 - 4.903 - 4.735 0.3661 - 0.0325 - 0.0330 
1775 0.5624 - 4.962 - 4.833 0.3724 - 0.0174 - 0.0192 
1815 0.8628 - 5.019 - 4'928 0.3789 - 0.0023 - 0.0060 
1855 1.1602 - 5.077 -5.022 0.3855 + 0.0126 + 0.0063 

(b) m = 2. Here b,, = - 14375--0.1392 
Stabilit,y coeff. - 

T bor boi b4r bdi D.D.&S. Present 
1695 -0.1917 -9.690 -3.878 0'7607 -0.192 -0.192 
1735 +0*1126 -9.808 -4.009 0.7700 -0.131 -0.134 
1775 0.4135 - 9.925 - 4.133 0.7804 - 0.071 - 0.080 
1815 0.7114 - 10.041 - 4.252 0.7912 - 0.013 - 0.029 
1855 1.0064 - 10.155 -4.365 0.8028 +0.046 +0*019 

(c) m = 4 .  Here b,, = +0.1822-i0.1671 
Stability coeff. - 

T bor bOi 64, b*i D.D. & 8. Present 

1695 -0.7679 - 19.396 -1.103 1.803 - 0.768 - 0.768 
1735 -0.4737 -19.633 -1.335 1.803 - 0.543 - 0.553 
1775 -0.1829 -19.867 -1.548 1.809 - 0.321 - 0.356 
1815 +0.1050 -20.099 -1.748 1.818 - 0.101 -0.174 
1855 +0*3900 -20.328 -1.933 1.829 +0.116 - 0.003 

TABLE 2. Constants and stability coefficients for disturbances with m aximuthal waves. 
Small-gap, ,u = 0, 6 = 0.05, A = 3.127, (T, = 1695) 
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are the values of as and b, at T = T, (a, = 0) consistent with our choices of a, 
and b,. (If we had chosen a, = a,, at all values of T, then we should have had a 
different value of a,,, since this depends, in a complicated way, on the value of 
dul/dao at a, = 0.) 

T 

1753 
1843 
1903 
1963 

T 
1753 
1903 
1933 
1963 

T 
1753 
1933 
1963 
1993 

(a) m = 1. Here b,, = - 3-072--0.0394 

bar bOi b4, b4t 
- 0.0555 - 4.9263 - 5.270 0.4607 
+ 0.6044 - 5.0556 - 5.496 0.4739 

1.0384 -5.1405 - 5.641 0.4835 
1.4664 - 5.2241 - 5.788 0.4937 

(b) m = 2. Hem 660 = -2*257-i0*0156 

bar boi b4r b4i 
- 0.2220 - 9.8545 - 4.503 0.9655 
+ 0-8618 - 10.2831 - 4.968 1,002 

1.0745 - 10.3671 - 5.054 1.010 
1.2858 - 10.4504 -5.137 1.017 

( c )  m = 4. Here b,, = 0.1308+i0.2595 

6 ,  b,, blr bdi 
- 0.8896 - 19.725 - 1.741 2.229 
+ 0.3585 - 20.752 - 2.656 2.248 

0.5618 - 20.919 - 2.786 2.257 
0.7637 - 21.085 - 2.91 1 2.268 

Stability coeff. 

- 0.0555 
- 0.0278 
- 0.0109 
+ 0.0037 

Stability coeff. 
- 0.222 
- 0.049 
-0.019 
+ 0.01 1 

Stability coeff. 

- 0.890 
-0.164 
- 0.060 
+ 0.040 

TABLE 3. Constants and stability coefficients for disturbances with m azimuthal waves. 
Full equations, p = 0, 6 = 0.05, A = 3.127 (F, = 1753) 

Here p = 0,6 = 0.05, A = 3.127. The figures in brackets are percentages above T,. 

D.D. & S. Present calcs. Present calcs. 
(small-gap) (small-gap) (full equations) 

Tc 1695 1695 1753 
m = l  1820 (7 yo) 1836(8 yo) 1946(11%) 
m = 2  1824 (8 yo) 1838(8%) 1951 (11 yo) 
m = 4  1837 (8 yo) 1865(9y0) 1981 (12 yo) 

TABLE 4. The critical Taylor numbers for the onset of instability of 
Taylor-vortex flow to modes with m azimuthal waves 

Although we have talked of a, as a small parameter the reader will notice that 
our results extend to values of u, greater than unity. By comparison of our fifth- 
order expansion results with the third-order expansion results of D. D. & s. we 
conclude that the results are probably meaningful. Mat hematically speaking we 
could for example just say that 0-la,  is our small parameter; presumably there is 
some other more natural small parameter related to a, which we could use, but 
there is no obvious choice. 

To calculate the stability coefficients we used the expression b, + b,F: + b5,,F;t, 
where F, is given by a, + a, F: + a5, Ft = 0. D. D. & S. used b,, + b,,A: where A, is 

35-2 
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given by a, +a,, A: = 0. They expressed some serious doubts about the validity 
of their answers. We quote: “The neglected terms, due to the truncation of the 
amplitude equations at cubic terms, may well be smaller than each of the terms 
b,, and b,,a,/a, individually, but may be very important in the neighbourhood of 
the zero of that  coefficient. Indeed i t  is conceivable that such terms could even 
prevent the occurrence of a zero. . . ”. However, after expressing these doubts 
D. D. & 8. then went on to  give a rough estimate of the error in the critical Taylor 
numbers in the small-gap approximation, and concluded that the error was 
probably about 30 of unknown sign in the cases m = 1 and m = 2. The results of 
table 4 show that this estimate was in fact pessimistic. 

The main result, then, of the present work is t o  resolve any doubt about the 
validity of the answers obtained by their third-order expansion, and about the 
effect of the small-gap approximation. VC7e see from table 4 that  the general 
picture of possible instabilities of Taylor-vortex flow a t  values of T about 10 yo 
above T, is confirmed. Also the m = 1 mode appears t o  be marginally the most 
unstable, again in accordance with D. D. & S. and with an interpretation of the 
experiments of Schwarz, Springett & Donnelly (1964). 

I should like to  thank Professor R. C. Di Prima and Professor J. T. Stuart for 
their help with this work, a large part of which was done while the author was a 
Visiting Assistant Professor in the Department of Mathematics, Rensselaer 
Polytechnic Institute, Troy, New York during the years 1968-70. This visit was 
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Appendix. Non-linear terms 
All the vectors Ni of equations (3.18) t o  (3.33) are obtained from L(U)U of 

equation ( 2 . 1 0 ~ ~ ) .  We outline the method of derivation and list the results (in a 
elementary fashion, since we feel this is clearer than a general formula). 

Every function uj(x) in equations (3.18) t o  (3.33) is a coefficient of 
p ( 7 )  j p ( 7 )  e i P G + i d @  

in the expansion (3.13) of U. Only a certain selection of the values of I, m,p, q are 
needed in our problem, and we have labelled the functions we need arbitrarily 
in preference t o  using a clumsy suffix notation. The values of j associated with 
various values of I ,  m, p and q are listed in table 5. 

To obtain the Nj we first find the partial differential equations for the 
~ ~ ~ ~ ( x ,  $, 6) of expansion (3.13). These are obtained by picking out the coefficients 
of PHmH”. The first two are 

(alax: - A - a, B) ulo0 = 0 ,  

( a / h  - A - bo B) uol0 = 0. 

P P x  - A - (a0 + bo) B) UllO = L(U100) UOlO + L(Uo10) U100’ 

(A 1) 

(A 2) 

(A 3) 

The equation for u , , ~  is 
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Now the functions uloo and uolo are given by (3.14a) and (3.14b). By substitution 
into (A 3) we see that ullo must have the form 

ull0 = u5(x) e%iAC+ik$ + u6(x) eW + v5(x) e-2iACfikQ. (A 4) 

The process may be continued, so that the form of each ulmn is forced by the earlier 
functions. Each ulmn is a sum of terms like ui(x) eipAC+iqk$ where the values of 
(p, q)  are given by 

( l+m+n,m-n) ,  ( l+m+n-2 ,m-n) ,  ..., ( - l -m-n ,m-n) .  (AS) 

The functions which we need for our purposes are listed in table 5. 
In order to find the ordinary differential equations (3.13) to (3.33) we pick out 

the coefficients of eipAcfiqkQ in equations like (A3). We find that the functions 
v,, v5, va, vl0 listed above satisfy differential equations which are simple trans- 
formations of those for correspondingly numbered uj, and hence that 

(A 6) 
- 

v, = u,, v5 = -a5, v, = Ga, Vl0 = -alo, 
where the notation a is defined in (3.12)t; and where we have used 

(A 7 )  
+ 

v, = u, and v2 = -a2 

as defined in ( 3 . 1 4 ~ )  and (3.14b). 

1, m, P, 
1 0  1 0  
1 0 - 1  0 
0 1  1 1  
0 1 - 1  1 
2 0  2 0  
2 0  0 0  
2 0 - 2  0 

I, m, p, q Function 1, m, p, q Function 

1 1  2 1  u, 2 1 1 1 u10 

1 1  0 1  U6 2 1 - 1  1 v10 

1 1 - 2  1 v5 4 0 2 0 u11 

3 0  3 0  u, 4 0 0 0 U12 

3 0  1 0  ug 3 1 2 1 u13 

3 0 - 1  0 v, 3 1 0 1 u14 

2 1  3 1  ug 5 0 1 0 U16 

4 1  1 1  u16 

TABLE 5 .  The names of the functions which are coefficients of 
P ( 7 ) H m ( 7 )  eQAC+iak6 in expression (3.13) of U 

The matrix M{f ( z ) , p ,  q) is defined by 

M(f,p,q) is obtained from L(U) by replacing a/ac by 
iph, a/a# by iqk and U by f. ( 

We d e b  the vector R(f, g) by: 

R(f,8) = M(f,PI,P')g+M(g,P",q")f, (A 9) 

where p f ,  qf are the harmonic numbers p ,  q associated with g, and p", qff are those 
associated with f (see table 5 ) .  

t We note also that 8, = ti,, 3, = ii,, and us = b,. 
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